Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Sci Rep ; 14(1): 8102, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582921

RESUMO

Lung cancer is a major public health issue and heavy burden in China and worldwide due to its high incidence and mortality without effective treatment. It's imperative to develop new treatments to overcome drug resistance. Natural products from food source, given their wide-ranging and long-term benefits, have been increasingly used in tumor prevention and treatment. This study revealed that Hibiscus manihot L. flower extract (HML) suppressed the proliferation and migration of A549 cells in a dose and time dependent manner and disrupting cell cycle progression. HML markedly enhanced the accumulation of ROS, stimulated the dissipation of mitochondrial membrane potential (MMP) and that facilitated mitophagy through the loss of mitochondrial function. In addition, HML induced apoptosis by activation of the PTEN-P53 pathway and inhibition of ATG5/7-dependent autophagy induced by PINK1-mediated mitophagy in A549 cells. Moreover, HML exert anticancer effects together with 5-FU through synergistic effect. Taken together, HML may serve as a potential tumor prevention and adjuvant treatment for its functional attributes.


Assuntos
Hibiscus , Neoplasias Pulmonares , Manihot , Humanos , Células A549 , Hibiscus/metabolismo , Manihot/metabolismo , Autofagia , Neoplasias Pulmonares/patologia , Flores/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo
2.
Arch Anim Nutr ; 78(1): 30-44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38436931

RESUMO

Cassava protein (CP), barley protein (BP) and yellow pea protein (YPP) are important nutrient and integral constituent of staple in pet foods. It is known that the digestion of proteins directly influences their absorption and utilisation. In the present work, we performed in vitro simulated gastrointestinal digestion of three plant proteins as a staple for dog and cat food. The digestion rate of CP, BP and YPP in dog food was 56.33 ± 0.90%, 48.53 ± 0.91%, and 66.96 ± 0.37%, respectively, whereas the digestion rate of CP, BP, and YPP in cat food was 66.25 ± 0.72%, 43.42 ± 0.83%, and 58.05 ± 0.85%, respectively. Using SDS-polyacrylamide gel electrophoresis to determine the molecular weight (MW) of each protein and the products of their digestion, it was revealed that MW of digestion samples decreased, and MW during the small intestine phase was lower than that during the gastric phase. Peptide sequences of digested products were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and it was found that the total number of peptides in the small intestine digestion samples was higher than that in the gastric phase samples. The MW of peptides obtained from CP was within the range of 1000-1500 Da, while MW of peptides derived from BP and YPP was within the range of 400-2000 Da. In addition, free amino acids were mainly produced in the small intestine phase. Furthermore, the percentage of essential amino acids in the small intestine phase (63 ~ 82%) was higher than that in the gastric phase (37 ~ 63%). Taken together, these findings contribute to the current understanding of the utilisation of plant proteins in dog and cat foods and provide important insights into the selection and application of plant proteins as a staple in dog and cat foods.


Assuntos
Aminoácidos , Digestão , Peptídeos , Digestão/fisiologia , Aminoácidos/metabolismo , Aminoácidos/química , Animais , Peptídeos/metabolismo , Peptídeos/química , Ração Animal/análise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Hordeum/química , Hordeum/metabolismo , Manihot/química , Manihot/metabolismo , Pisum sativum/química , Pisum sativum/metabolismo , Cães , Proteínas de Ervilha/química , Proteínas de Ervilha/metabolismo , Gatos , Espectrometria de Massas em Tandem/veterinária , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/química
3.
Nat Methods ; 21(3): 488-500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361019

RESUMO

Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts.


Assuntos
Herpesvirus Humano 8 , Manihot , Sarcoma de Kaposi , Sarcoma de Kaposi/metabolismo , Proteínas Virais/metabolismo , Manihot/metabolismo , Latência Viral , Herpesvirus Humano 8/metabolismo
4.
Plant Physiol ; 194(4): 2724-2738, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38198213

RESUMO

Global warming is an adverse environmental factor that threatens crop yields and food security. 2C-type protein phosphatases (PP2Cs), as core protein phosphatase components, play important roles in plant hormone signaling to cope with various environmental stresses. However, the function and underlying mechanism of PP2Cs in the heat stress response remain elusive in tropical crops. Here, we report that MePP2C1 negatively regulated thermotolerance in cassava (Manihot esculenta Crantz), accompanied by the modulation of reactive oxygen species (ROS) accumulation and the underlying antioxidant enzyme activities of catalase (CAT) and ascorbate peroxidase (APX). Further investigation found that MePP2C1 directly interacted with and dephosphorylated MeCAT1 and MeAPX2 at serine (S) 112 and S160 residues, respectively. Moreover, in vitro and in vivo assays showed that protein phosphorylation of MeCAT1S112 and MeAPX2S160 was essential for their enzyme activities, and MePP2C1 negatively regulated thermotolerance and redox homeostasis by dephosphorylating MeCAT1S112 and MeAPX2S160. Taken together, this study illustrates the direct relationship between MePP2C1-mediated protein dephosphorylation of MeCAT1 and MeAPX2 and ROS accumulation in thermotolerance to provide insights for adapting to global warming via fine-tuning thermotolerance of the tropical crop cassava.


Assuntos
Manihot , Termotolerância , Antioxidantes , Manihot/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Monoéster Fosfórico Hidrolases
5.
BMC Plant Biol ; 23(1): 475, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807058

RESUMO

Cassava is an ideal food security crop in marginal and drought environment. However, the post-harvest storage of cassava is urgent problem to be resolved. In this study, the storage tolerant and non-tolerant cassava were screened by measuring the change of Peroxidase (POD), Superoxide dismutase (SOD), Catalase (CAT) and Malondialdehyde (MDA) in seven cultivars of cassava. Compared with other cultivars, the cultivar of SC14 showed the highest level of SOD, MDA and POD respectively at 0 day, 12 day and 9 day postharvest while exhibited lowest level of CAT at 0 day postharvest, indicating the strongest antioxidant capability and storage tolerance. In contrast, GR15231, termed as storage non-tolerance cultivars, showed lowest SOD and POD at 12 day and kept a relative high level of CAT at 12 day post-harvest. In addition, SC14 has higher level of starch and dry substance than GR15231. Mass spectrum was performed for SC14 and GR15231 to explore the key metabolites regulating the storage tolerance of cassava. The results showed that the expression of glutathione (reduced) and raffinose was significantly decreased at 12 day post-harvest both in tolerant SC14 and non-tolerant GR15231. Compared with GR15231, SC14 showed higher level of raffinose both at 0 and 12 day post-harvest, indicating that raffinose may be the potential metabolites protecting SC14 cultivar from deterioration post-harvest. Additionally, raffinose ratio of SC14a/SC14b was five times less than that of GR15231a/GR15231b, reflecting the slower degradation of raffinose in SC14 cultivar compared with GR15231 cultivar. In conclusion, the antioxidant microenvironment induced by reduced glutathione and higher level of raffinose in SC14 cultivar might be the promising metabolites to improve its antioxidant capacity and antibiosis and thus maintained the quality of Cassava root tubers.


Assuntos
Antioxidantes , Manihot , Antioxidantes/metabolismo , Manihot/genética , Manihot/metabolismo , Rafinose/metabolismo , Glutationa/metabolismo , Antibiose , Superóxido Dismutase/metabolismo , Peroxidase/metabolismo , Peroxidases/metabolismo
6.
Toxicon ; 232: 107200, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37419285

RESUMO

Several natural compounds reduce tumour cell growth and metastasis by inducing programmed cell death. Cassava (Manihot esculenta Crantz) contains cyanogenic glycosides such as, linamarin and lotaustralin, can be enzymatically cleaved by linamarase to release hydrogen cyanide (HCN), which can have therapeutic benefits against hypertension, asthma, and cancer. We have developed a technology for isolating bio-active principles from cassava leaves.The present study is designed to analyze the cytotoxic effect of cassava cyanide extract (CCE) against human glioblastoma cells (LN229). The treatment of CCE demonstrated a dose dependent toxicity on glioblastoma cells. At higher concentration tested, the CCE (400 µg/mL) was found to be cytotoxic, reducing the cell viability to 14.07 ± 2.15% by negatively influencing the mitochondrial activity, and lysosomal and cytoskeletal integrity. Coomassie's brilliant blue staining confirmed cells' morphological aberration after 24 h of treatment with CCE. Moreover, DCFH-DA assay and Griess reagent showed an increase in ROS but a decrease in RNS production at a concentration of CCE. Flow cytometry analysis revealed that CCE interfered with G0/G1, S, and G2/M stages of the cell cycle of glioblastoma, and Annexin/PI staining indicated a dose-dependent increase in cell death, confirming the toxic nature of CCE on LN229 cells. These findings suggest that cassava cyanide extract has potential as an antineoplastic agent against glioblastoma cells, which is an aggressive and difficult-to-treat type of brain cancer. However, it is important to note that the study was conducted in vitro, and further research is necessary to assess the safety and efficacy of CCE in vivo. Additionally, it is essential to establish the optimal dose and potential side effects before considering its use as a therapeutic agent.


Assuntos
Antineoplásicos , Glioblastoma , Manihot , Humanos , Cianetos/análise , Cianetos/metabolismo , Manihot/toxicidade , Manihot/metabolismo , Glioblastoma/tratamento farmacológico , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia
7.
PLoS One ; 18(4): e0282100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079564

RESUMO

The Arabidopsis thaliana ASYMMETRIC LEAVES2 (AS2) gene is responsible for the development of flat, symmetric, and extended leaf laminae and their veins. The AS2 gene belongs to the plant-specific AS2-LIKE/LATERAL ORGAN BOUNDARIES (LOB)-domain (ASL/LBD), which consists of 42 proteins in Arabidopsis with a conserved amino-terminal domain known as the AS2/LOB domain, and a variable carboxyl-terminal region. AS2/LOB domain consists of an amino-terminal (N-terminal) that contains a cysteine repeat (the C-motif), a conserved glycine residue, and a leucine-zipper-like. AS2/LOB domain has been characterised in plants such as A. thaliana, Zea mays, and Oryza sativum. Nevertheless, it remains uncharacterised in cassava (Manihot esculenta). Characterisation and identification of cassava ASL/LBD genes using the computational algorithms, hidden Markov model profiles (PF03195), determined 55 ASL/LBD genes (MeASLBD1 to MeASLBD55). The gene structure and motif composition were conserved in MeASLBDs, while the expression profiles of these genes were highly diverse, implying that they are associated with diverse functions. Weighted gene co-expression network analysis (WGCNA) of target genes and promoter analysis suggest that these MeASLBDs may be involved in hormone and stress responses. Furthermore, the analysis of cis-regulatory elements in promoter regions suggested that MeASLBDs may be involved in the plant phytohormone signal response. The transcriptome data of cassava under biotic and abiotic stresses revealed that MeASLBD46 and MeASLBD47 greatly respond to disease and drought. The MeASLBD47 gene was selected for functional analysis. The result indicated that MeASLBD47 significantly mitigated the virulence of cassava bacterial blight (XamCHN11) through Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) and Virus-induced gene silencing (VIGS). These findings provided a comprehensive analysis of ASL/LBD genes and laid the groundwork for future research to understand ASL/LBD genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Manihot , Manihot/genética , Manihot/metabolismo , Estudo de Associação Genômica Ampla , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas
8.
BMC Plant Biol ; 23(1): 227, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118665

RESUMO

BACKGROUND: Cassava (Manihot esculenta Crantz) is widely planted in tropical and several subtropical regions in which drought, high temperatures, and other abiotic stresses occur. Metallothionein (MT) is a group of conjugated proteins with small molecular weight and rich in cysteine. These proteins play a substantial role in response to physiological stress through the regulation of reactive oxygen species (ROS). However, the biological functions of MT genes in cassava are unknown. RESULTS: A total of 10 MeMT genes were identified in the cassava genome. The MeMTs were divided into 3 groups (Types 2-4) based on the contents and distribution of Cys residues. The MeMTs exhibited tissue-specific expression and located on 7 chromosomes. The MeMT promoters contain some hormones regulatory and stresses responsiveness elements. MeMTs were upregulated under hydrogen peroxide (H2O2) treatment and in respond to post-harvest physiological deterioration (PPD). The results were consistent with defense-responsive cis-acting elements in the MeMT promoters. Further, four of MeMTs were selected and silenced by using the virus-induced gene silencing (VIGS) method to evaluate their functional characterization. The results of gene-silenced cassava suggest that MeMTs are involved in oxidative stress resistance, as ROS scavengers. CONCLUSION: We identified the 10 MeMT genes, and explore their evolutionary relationship, conserved motif, and tissue-specific expression. The expression profiles of MeMTs under three kinds of abiotic stresses (wounding, low-temperature, and H2O2) and during PPD were analyzed. The tissue-specific expression and the response to abiotic stresses revealed the role of MT in plant growth and development. Furthermore, silenced expression of MeMTs in cassava leaves decreased its tolerance to ROS, consistent with its predicted role as ROS scavengers. In summary, our results suggest an important role of MeMTs in response to physiological stress as well as species adaptation via the regulation of ROS homeostasis.


Assuntos
Manihot , Espécies Reativas de Oxigênio/metabolismo , Manihot/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Secas , Filogenia
9.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563603

RESUMO

Glyoxalase I (GLYI) is a key enzyme in the pathway of the glyoxalase system that degrades the toxic substance methylglyoxal, which plays a crucial part in plant growth, development, and stress response. A total of 19 GLYI genes were identified from the cassava genome, which distributed randomly on 11 chromosomes. These genes were named MeGLYI-1-19 and were systematically characterized. Transcriptome data analysis showed that MeGLYIs gene expression is tissue-specific, and MeGLYI-13 is the dominant gene expressed in young tissues, while MeGLYI-19 is the dominant gene expressed in mature tissues and organs. qRT-PCR analysis showed that MeGLYI-13 is upregulated under 2 h excess iron stress, but downregulated under 6, 12, and 20 h iron stress. Overexpression of MeGLYI-13 enhanced the growth ability of transgenic yeast under iron stress. The root growth of transgenic Arabidopsis seedlings was less inhibited by iron toxicity than that of the wild type (WT). Potted transgenic Arabidopsis blossomed and podded under iron stress, but flowering of the WT was significantly delayed. The GLYI activity in transgenic Arabidopsis was improved under both non-iron stress and iron stress conditions compared to the WT. The SOD activity in transgenic plants was increased under iron stress, while the POD and CAT activity and MDA content were decreased compared to that in the WT. These results provide a basis for the selection of candidate genes for iron toxicity tolerance in cassava, and lay a theoretical foundation for further studies on the functions of these MeGLYI genes.


Assuntos
Arabidopsis , Lactoilglutationa Liase , Manihot , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Ferro/toxicidade , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
10.
Plant J ; 111(3): 683-697, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608142

RESUMO

Ethylene and melatonin are widely involved in plant development and environmental stress responses. However, the role of their direct relationship in the immune response and the underlying molecular mechanisms in plants remain elusive. Here, we found that Xanthomonas axonopodis pv. manihotis (Xam) infection increased endogenous ethylene levels, which positively modulated plant disease resistance through activating melatonin accumulation in cassava. In addition, the ethylene-responsive transcription factor ETHYLENE INSENSITIVE LIKE5 (MeEIL5), a positive regulator of disease resistance, was essential for ethylene-induced melatonin accumulation and disease resistance in cassava. Notably, the identification of heat stress transcription factor 20 (MeHsf20) as an interacting protein of MeEIL5 indicated the association between ethylene and melatonin in plant disease resistance. MeEIL5 physically interacted with MeHsf20 to promote the transcriptional activation of the gene encoding N-acetylserotonin O-methyltransferase 2 (MeASMT2), thereby improving melatonin accumulation. Moreover, MeEIL5 promoted the physical interaction of MeHsf20 and pathogen-related gene 3 (MePR3), resulting in improved anti-bacterial activity of MePR3. This study illustrates the dual roles of MeEIL5 in fine-tuning MeHsf20-mediated coordination of melatonin biosynthesis and anti-bacterial activity, highlighting the ethylene-responsive MeEIL5 as the integrator of ethylene and melatonin signals in the immune response in cassava.


Assuntos
Manihot , Melatonina , Xanthomonas , Resistência à Doença/genética , Etilenos/metabolismo , Manihot/genética , Manihot/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/metabolismo
11.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613690

RESUMO

Cassava is one of the most versatile tuberous-root crops on Earth. However, the postharvest storage properties of cassava tuberous root mean that it is perishable through a process known as postharvest physiological deterioration (PPD), which seriously affects its starch quality. Therefore, a comprehensive understanding of the transcriptional regulatory activity of cassava against the PPD response is necessary in order to extract key molecular mechanisms related to PPD tolerance. In this study, we found that RYG1 tuberous roots showed delayed PPD compared to those of SC8. In addition, RYG1 roots maintained a more stable cell wall structure after storage than those of SC8. The transcriptome changes in tuberous roots were analyzed for both RYG1 and SC8 after 21 days of storage (SR and SS) compared to fresh (FR and FS) by the RNA-Seq method. The total number of differentially expressed genes (DEGs) in the various comparisons of these four samples ranged from 68 to 3847. Of these, a total of 2008 co-DEGs in SR vs. SS were shared by either SR vs. FR or SS vs. FS. GO and KEGG enrichment analysis revealed that upregulated co-DEGs in SR vs. SS were mainly enriched in photosynthesis, protein processing, hormone and cutin, suberine and wax biosynthesis. By contrast, the downregulated co-DEGs were mainly related to cell wall organization, starch and sucrose metabolism, galactose metabolism, phenylpropanoid biosynthesis, diterpenoid biosynthesis, cysteine and methionine metabolism and flavonoid biosynthesis. The protein-protein interaction (PPI) networks of the co-DEGs showed a complex interaction of genes in different pathways, and 16 hub genes were characterized to have a degree in excess of 15, among which eight genes were associated with photosynthesis. These results provide new information for the study of cassava resistance to PPD and lay a foundation for the further molecular breeding of storage-tolerant cassava varieties.


Assuntos
Manihot , Raízes de Plantas , Raízes de Plantas/metabolismo , Manihot/metabolismo , Perfilação da Expressão Gênica , Transcriptoma , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
12.
BMC Vet Res ; 17(1): 304, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503491

RESUMO

BACKGROUND: Total fresh cassava root (FCR) production was 275 million tonnes in 2018 which equals 61.1 % of the total production, and Thailand produced 10.7 % FCR of the total production. FCR is one of the main energy source for ruminant. The limitation of FCR utilization is due to the presence of hydrogen cyanide (HCN). The study aimed to evaluate the effect of sulfur, urea and FCR at various levels on in vitro gas production, ruminal fermentation and in vitro degradability. The study hypothesized that: (1) sulfur, urea and FCR have no interaction effect and (2) effect of FCR and urea is related to sulfur addition. RESULTS: The study aimed to elucidate the optimum level of elemental sulfur, fresh cassava root (FCR) and urea and their effect on in vitro gas production, ruminal fermentation, thiocyanate concentration, and in vitro degradability. A 3 × 2 × 4 in a completely randomized design were conducted. Factor A was level of sulfur at 0 %, 1 and 2 % of concentrate dry matter (DM), factor B was level of urea at 2 and 4 % of concentrate DM, and factor C was level of the FCR at 0, 200, 300 and 400 mg DM of the total substrate. The study found that elemental sulfur, urea and FCR had no interaction effect on the kinetics of in vitro gas, ruminal fermentation, HCN and in vitro degradability. Elemental sulfur supplementation (P < 0.05) significantly increased the in vitro gas produced from an insoluble fraction (b), in vitro DM degradability and either neutral detergent fiber (NDF) or acid detergent fiber (ADF) degradability and propionate (C3) concentration while decreased the ruminal HCN concentration. Urea levels showed a (P < 0.05) significant increase of the potential extent of in vitro gas production, ruminal ammonia nitrogen (NH3-N) and total volatile fatty acid (TVFA). Fresh cassava root supplementation (P < 0.05) significantly increased the in vitro gas produced from an immediate soluble fraction (a), in vitro gas produced from insoluble fraction, in vitro gas production rate constant, total VFA, C3 concentration and HCN while decreased ruminal pH, acetate and butyrate concentration. It could be concluded that 2 % elemental sulfur, 4 % urea and 300 mg FCR showed a greater effect on in vitro gas production, ruminal fermentation and HCN reduction. CONCLUSIONS: The study found that elemental sulfur, urea, and FCR had no interaction effect on the kinetics of in vitro gas, total in vitro gas, ruminal fermentation, and HCN concentration. It could be concluded that 2 % elemental sulfur, 4 % urea, and 300 mg FCR showed a greater effect on in vitro gas production, ruminal fermentation, and HCN reduction.


Assuntos
Ração Animal/análise , Metano/metabolismo , Raízes de Plantas/metabolismo , Rúmen/efeitos dos fármacos , Enxofre/farmacologia , Ureia/farmacologia , Animais , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Digestão/fisiologia , Fermentação/efeitos dos fármacos , Fermentação/fisiologia , Manihot/metabolismo , Metano/análise
13.
Plant J ; 107(3): 925-937, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34037995

RESUMO

Heat shock protein 90 (HSP90) is involved in plant growth and various stress responses via regulating protein homeostasis. Autophagy keeps cellular homeostasis by recycling the components of cellular cytoplasmic constituents. Although they have similar effects on cellular protein homeostasis, the direct association between HSP90 and autophagy signaling remains unclear in plants, especially in tropical crops. In this study, the correlation between HSP90 and autophagy signaling was systematically analyzed by protein-protein interaction in cassava, one of the most important economy fruit in tropic. In addition, their effects on plant disease response and underlying mechanisms in cassava were investigated by functional genomics and genetic phenotype assay. The potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex interacts with MeATGs and subsequently triggers autophagy signaling, conferring improved disease resistance to cassava bacterial blight (CBB). On the contrary, HSP90 inhibitor and autophagy inhibitor decreased disease resistance against CBB in cassava, and autophagy may be involved in the potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex-mediated multiple immune responses. This study highlights the precise modulation of autophagy signaling by potential MeHSP90.9-MeSGT1-MeRAR1 chaperone complex in autophagy-mediated disease resistance to CBB.


Assuntos
Autofagia/genética , Proteínas de Choque Térmico HSP90/metabolismo , Manihot/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Proteínas de Choque Térmico HSP90/genética , Manihot/metabolismo , Chaperonas Moleculares , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xanthomonas axonopodis
14.
F1000Res ; 10: 56, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35387272

RESUMO

Background: Bubble tea drinks contain tea and tapioca pearls. Chewing tapioca pearls in bubble tea drinks may increase salivary components. Because of its proteins, inorganic components, and enzymes, saliva plays an important role in the body's defense against bacteria and viruses. This study aims to analyze the effect of chewing tapioca pearls in bubble tea drinks on salivary C-reactive protein (CRP) and calcium (Ca) levels. Methods: The inclusion criterion was 18-25 years of age. The exclusion criteria were receiving medication, using dentures, a history of dry mouth, smoking and systemic disease. In the first week of the experiment, subjects drank bubble tea with tapioca pearls for three days (intervention week). In the second week, the same subjects drank tea without pearls for three days (control week). Each subject drank the bubble tea for 5 minutes per day over 3 days. Saliva samples were collected on the first day before bubble tea consumption (pretest) and on the third day after tea consumption (posttest). Saliva collection was performed in the morning (09:00 am-12:00 pm) for 1 minute. Sixty saliva samples were collected from 15 subjects. Salivary CRP levels were measured using a commercial ELISA kit, and Ca levels were determined using semi-quantitative test strips. Results: Salivary CRP decreased significantly on the third day in the intervention group but showed no significant difference with the control group. Calcium levels increased significantly on the third day in both groups. Conclusion: Bubble tea drinks could improve the quality of saliva by decreasing salivary CRP and increasing Ca levels. Trial registration: ClinicalTrials.gov, NCT04670341 (17 th December 2020).


Assuntos
Proteína C-Reativa , Manihot , Proteína C-Reativa/metabolismo , Cálcio/metabolismo , Humanos , Manihot/metabolismo , Mastigação , Melhoria de Qualidade , Saliva , Chá/metabolismo
15.
Microbiome ; 8(1): 4, 2020 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31954405

RESUMO

BACKGROUND: Stress-induced hormones are essential for plants to modulate their microbiota and dynamically adjust to the environment. Despite the emphasis of the role of the phytohormone ethylene in the plant physiological response to heterospecific neighbour detection, less is known about how this activated signal mediates focal plant rhizosphere microbiota to enhance plant fitness. Here, using 3 years of peanut (Arachis hypogaea L.), a legume, and cyanide-containing cassava (Manihot esculenta Crantz) intercropping and peanut monocropping field, pot and hydroponic experiments in addition to exogenous ethylene application and soil incubation experiments, we found that ethylene, a cyanide-derived signal, is associated with the chemical identification of neighbouring cassava and the microbial re-assemblage in the peanut rhizosphere. RESULTS: Ethylene production in peanut roots can be triggered by cyanide production of neighbouring cassava plants. This gaseous signal alters the microbial composition and re-assembles the microbial co-occurrence network of peanut by shifting the abundance of an actinobacterial species, Catenulispora sp., which becomes a keystone in the intercropped peanut rhizosphere. The re-assembled rhizosphere microbiota provide more available nutrients to peanut roots and support seed production. CONCLUSIONS: Our findings suggest that root ethylene acts as a signal with a dual role. It plays a role in perceiving biochemical cues from interspecific neighbours, and also has a regulatory function in mediating the rhizosphere microbial assembly, thereby enhancing focal plant fitness by improving seed production. This discovery provides a promising direction to develop novel intercropping strategies for targeted manipulations of the rhizosphere microbiome through phytohormone signals. Video abstract.


Assuntos
Cianetos/metabolismo , Etilenos/metabolismo , Microbiota , Raízes de Plantas/fisiologia , Rizosfera , Microbiologia do Solo , Arachis/efeitos dos fármacos , Arachis/microbiologia , Arachis/fisiologia , Manihot/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia
16.
Braz. arch. biol. technol ; 63: e20170521, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1132203

RESUMO

Abstract Amylases are enzymes involved in starch hydrolysis, generating the most diverse products, such as maltose, glucose and dextrins. This work aimed the study of the production of amylolytic enzymes via solid-state fermentation (SSF) using "crueira", an essentially starchy cassava residue, as substrate-support and Bacillus sp. as microorganism. For the implementation of the experimental part, a Central Composite Design (CCD) with three variables (initial moisture, pH and temperature) was made. Each test was examined at 24, 48 and 72 hours by the method of starch dextrinizing activity. The optimum production conditions were 60% initial moisture, pH 6 and 37 °C. The maximum yield was 437.76 U/g in 72 hours of fermentation. The optimum temperature of enzyme performance was 65 °C. The pH optimum range was 4 to 6. The Co2 +, Ca2 + and K+ ions positively influenced the activity of enzymes and the Fe2+ ion had no effect on enzymatic activity. On the other hand, the ions Hg2+, Zn2+, Cu2+, Mn2+ and Mg2+ adversely influenced enzymatic activity. Therefore, producing amylases from Bacillus sp. and using crueira as a substrate is possible.


Assuntos
Animais , Bacillus/enzimologia , Manihot/metabolismo , Amilases/biossíntese , Amido/metabolismo , Análise de Variância , Fermentação
17.
Chem Commun (Camb) ; 55(100): 15137-15140, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31789333

RESUMO

A fluorescent probe (TPA-BTD-MT) was designed to monitor cyanide ions (CN-) with a "turn-on" response, changing from "turn-off" behavior due to the structural change. TPA-BTD-MT exhibited high selectivity for sensing CN- in several food samples and was successfully used for imaging CN- in living cells and animals with strong "turn-on" fluorescence.


Assuntos
Cianetos/análise , Corantes Fluorescentes/química , Análise de Alimentos/métodos , Imagem Óptica , Compostos de Anilina/química , Animais , Linhagem Celular Tumoral , Limite de Detecção , Manihot/química , Manihot/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Teoria Quântica , Solanum tuberosum/química , Solanum tuberosum/metabolismo
18.
J Sci Food Agric ; 99(6): 3034-3044, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30488472

RESUMO

BACKGROUND: Cassava leaves are an abundant global agricultural residue because the roots are a major source of dietary carbohydrates. Although cassava leaves are high in protein, the protein is not bioavailable. This work aimed to convert cassava leaves to a bioavailable protein-rich animal feed ingredient using high-protein yeasts. RESULTS: The structural proteins (ca 200 g kg-1 d.b.) from sundried cassava leaves were solubilized by mild alkali pretreatment, and the resulting cassava leaf hydrolysate (CLH) was used to screen for growth of 46 high-protein yeasts from 30 species. Promising candidates from the initial screen cultivated at a 10 mL scale demonstrated increases in relative abundance of essential amino acids over that of CLH. In particular, lysine, growth-limiting for some livestock, was increased up to 226% over the CLH content. One yeast, Pichia kudriavzevii UCDFST 11-602, was grown in 3 L of CLH in a bioreactor to examine the scale-up potential of the yeast protein production. While glucose was completely consumed, yeast growth exited log phase before depleting either carbon or nitrogen, suggesting other growth-limiting factors at the larger scale. CONCLUSIONS: High-value animal feed with enriched essential amino acid profiles can be produced by yeasts grown on agricultural residues. Yeasts convert structural protein solubilized from cassava leaves to essential amino acid-enriched, digestible protein. The low carbohydrate content of the leaves (ca 200 g kg-1 d.b.), however, necessitated glucose supplementation for yeast growth. © 2018 Society of Chemical Industry.


Assuntos
Manihot/microbiologia , Pichia/metabolismo , Folhas de Planta/metabolismo , Ração Animal/análise , Biomassa , Biotransformação , Manihot/química , Manihot/metabolismo , Pichia/crescimento & desenvolvimento , Folhas de Planta/química , Folhas de Planta/microbiologia
19.
Braz. j. microbiol ; 49(4): 808-815, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974288

RESUMO

ABSTRACT Chicha, a type of beer made mainly with maize or cassava, is a traditional fermented beverage of the Andean region. There have only been a few studies on yeasts associated with chicha fermentation, and the species diversity occurring during the production of this beverage is not known. The objective of this study was to determine the biodiversity of yeasts in chicha, and to characterize the Saccharomyces cerevisiae populations associated with the production of chicha de jora, seven-grain chicha, chicha de yuca, and chicha de morocho in Ecuador. The molecular diversity of S. cerevisiae populations was determined by restriction polymorphism mitochondrial profiles. The beverages were characterized based on their physicochemical parameters. Twenty-six species were identified, and the most prevalent species were S. cerevisiae and Torulaspora delbrueckii. Other yeast species were isolated at low frequencies. Among 121 isolates of S. cerevisiae, 68 different mtDNA molecular profiles were identified. These results showed that chichas are fermented by a high number of different strains of S. cerevisiae. Some other species provided a minor contribution to the fermentation process. The chicha presented generally similar physicochemical parameters to those observed for other traditional fermented beverages, and can be considered as an acid fermented beverage.


Assuntos
Saccharomyces cerevisiae/isolamento & purificação , Cerveja/microbiologia , Leveduras/isolamento & purificação , Leveduras/metabolismo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cerveja/análise , Leveduras/classificação , Leveduras/genética , Manihot/metabolismo , Manihot/microbiologia , Zea mays/metabolismo , Zea mays/microbiologia , Biodiversidade , Equador , Fermentação
20.
Braz. j. microbiol ; 49(4): 823-831, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974299

RESUMO

ABSTRACT Sour cassava starch (Polvilho azedo) is obtained from a spontaneous fermentation conducted by microorganisms from raw materials and fermentation tanks. This product is traditionally used in the baking industry for the manufacture of biscuits and Brazilian cheese breads. However, the end of fermentation is evaluated empirically, and the process occurs without standardization, which results in products of inconsistent quality. Predominant microbiota from a cassava flour manufacturer was isolated in order to select starter cultures for the production of sour cassava starch in a pilot-scale fermentation process. Lactic acid bacteria and yeasts were isolated, enumerated and grouped by Restriction Fragment Length Polymorphism, and PCR fingerprinting, respectively. One isolate of each molecular profile was identified by sequencing of the rRNA gene. LAB were prevalent throughout the entire process. Lactobacillus brevis (21.5%), which produced the highest values of acidity, and Lactobacillus plantarum (13.9%) were among the most frequent species. Pichia scutulata (52.2%) was the prevalent yeast and showed amylolytic activity. The aforementioned species were tested as single and mixed starter cultures in a pilot-scale fermentation process for 28 days. L. plantarum exhibited better performance as a starter culture, which suggests its potential for the production of sour cassava starch.


Assuntos
Amido/metabolismo , Leveduras/metabolismo , Manihot/química , Lactobacillus/metabolismo , Amido/química , Leveduras/genética , Brasil , Manihot/metabolismo , Fermentação , Microbiota , Microbiologia de Alimentos , Lactobacillus/isolamento & purificação , Lactobacillus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA